Table of Contents

PART I:
The History and Current Status of the Industrial HMI
We begin with the origin and evolution of the industrial HMI. The positive and negative issues posed by the introduction of the Distributed Control System (DCS) are covered. The current status of industrial HMIs is characterized, along with clear justification for significant improvement.

PART II:
Fundamentals of HMI Design and Best Practices
The concepts and practices of proper HMI design are examined in detail. Good and bad practices are illustrated. Assessment methods for existing systems are provided. Methods for providing proper process overview, graphic hierarchy, and progressive exposure of detail are introduced, along with detailed design principles and examples. Proper physical console layout and other factors are covered in detail.

PART III:
Design and Implementation of a High Performance HMI
A straightforward methodology is provided for the development, implementation, and maintenance of a High Performance HMI. The methodology is useful for either new applications or for the improvement of existing HMIs.

PART IV:
Control Rooms, Abnormal Situation Management, and the Future of the Industrial HMI
The effect of the control room environment on operator effectiveness is detailed. Proper and improper practices and design considerations are covered. The principles of proper Abnormal Situation Management and human performance are explained. The future direction and capabilities of the industrial HMI are predicted.
## Detailed Table of Contents

**Foreword**

### PART I: The History and Current Status of the Industrial HMI

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>3-6</td>
</tr>
<tr>
<td>1.1</td>
<td>Why This Book Was Written</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Is This Book for You?</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>A Word of Warning!</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>The State of Industrial HMIs and Operator Graphics</td>
<td>9-18</td>
</tr>
<tr>
<td>2.1</td>
<td>In the Beginning – the Control Panel</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>The Arrival of the Distributed Control System</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Early and Current HMIs</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>HMI-Related Problems Arise</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>How Did This Happen?</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>The Answer to the Problem</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Conclusion</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>The Justification for HMI Change</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>HMI Best Practices – A Managerial Overview</td>
<td>29-33</td>
</tr>
<tr>
<td>4.1</td>
<td>Bring Back the Big Picture</td>
<td>29</td>
</tr>
<tr>
<td>4.2</td>
<td>Create Hierarchical, Scenario-Based Displays to Improve Situation Awareness and Response</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Redesign Displays to Emphasize the Most Important Information</td>
<td>31</td>
</tr>
<tr>
<td>4.4</td>
<td>Employ Proper Control Room and Physical Console Design</td>
<td>32</td>
</tr>
<tr>
<td>4.5</td>
<td>Minimize Distractions in the Control Room</td>
<td>33</td>
</tr>
<tr>
<td>4.6</td>
<td>Seven Steps for Creating a High Performance HMI</td>
<td>33</td>
</tr>
</tbody>
</table>

### PART II: Fundamentals of HMI Design and Best Practices

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Assessing HMI Performance</td>
<td>37-40</td>
</tr>
<tr>
<td>5.1</td>
<td>HMI Evaluation Methodology</td>
<td>38</td>
</tr>
<tr>
<td>5.2</td>
<td>A Failing Grade: “F”</td>
<td>38</td>
</tr>
<tr>
<td>5.3</td>
<td>Not Quite Failing – a “D”</td>
<td>39</td>
</tr>
<tr>
<td>5.4</td>
<td>Still Not Good Enough – a “C”</td>
<td>39</td>
</tr>
<tr>
<td>5.5</td>
<td>Finally – a “B”</td>
<td>40</td>
</tr>
</tbody>
</table>
Chapter 6: The Development of a High Performance HMI Philosophy and Style Guide

6.1 A First Principle: Users of HMIs
6.2 The HMI Philosophy Document and Style Guide – Overview
6.3 Purpose and Use of a High Performance HMI Philosophy Document
6.4 Development of a High Performance HMI Philosophy Document
6.5 HMI Style Guides
6.6 HMI Objects and Object Libraries

Chapter 7: Basic Principles for High Performance HMIs

7.1 Overview
7.2 The Process Pictorial – An Overused, Low-Performance Paradigm
7.3 Recognizing Good and Bad Graphics at a Glance:
7.4 Data is Not Information!
7.5 Analog is Often Better
7.6 Moving Analog Indicators
7.7 Other Analog Depiction
7.8 The Importance of Trends
7.9 Proper Implementation of Trends
7.10 General Considerations for Displays
7.11 Use of Color
7.12 Standards and Color Conflict
7.13 Depicting Lines, Vessels, and Static Equipment
7.14 Depicting Text
7.15 Depicting Values
7.16 Depicting Vessel Levels
7.18 Depicting Alarm Behavior
7.19 Alarm Priorities
7.20 Alarm Indication Methods
7.21 Alarm Access
7.22 Audible Alarm Indication
7.23 Objects and Symbols
7.24 Process Controllers
7.25 Control Valves and Shutoff Valves
7.26 Instrument Lines
7.27 Depicting Dynamic Equipment
7.28 Depicting Equipment Commands
Chapter 8: Detailed Design of High Performance Displays

8.1 Display Hierarchy
8.2 Designing Level 1 Process Overview Displays
8.3 Designing Level 2 Process Control Displays
8.4 Startup, Shutdown, and Abnormal Situation Level 2 Displays
8.5 Displaying Interlock Functionality on Level 2 and Level 3 Displays
8.6 Designing Level 3 Process Detail Displays
8.7 Designing Level 4 Process Support and Diagnostic Displays

Chapter 9: The Design and Implementation of High Performance HMI Displays

9.1 Overview
9.2 Determine Specific Performance and Goal Objectives for the Control of the Process, in All Modes of Operation
9.3 Perform Task Analysis to Determine Control Manipulations Needed to Achieve the Performance and Goal Objectives
9.4 Design High Performance Graphics, Using the Design Principles in the HMI Philosophy and Elements From the Style Guide, to Address the Identified Tasks.
9.5 Install, Commission, and Provide Training on the New Displays
9.6 Control, Maintain, and Periodically Reassess the HMI Performance

Chapter 10: Physical Screens and Layout of an Operator Console

10.1 Physical Screens
10.2 General Purpose PC
PART IV:
Control Rooms, Abnormal Situation Management, and the Future of the Industrial HMI

Chapter 11: Control Room Design, Layout, Operating, and Management Practices 141
11.1 Overview 141
11.2 Early Control Rooms 142
11.3 The Introduction of Human Factors Design 143
11.4 Design of New Control Rooms 145
11.5 Lighting Levels 147
11.6 Glare and Reflection 149
11.7 Acoustics 150
11.8 Music 150
11.9 Telephones 151
11.10 Other Distractions 151
11.11 Workload Analysis 152
11.12 Console Adjacency and Arrangement 154
11.13 Video Walls 157

Chapter 12: Situation Awareness and Abnormal Situation Response 159
12.1 Stress and Performance 159
12.2 Performance Shaping Factors 161
12.3 Abnormal Situation Management Concepts 162
12.4 Human Problem-Solving Behavior 163
12.5 Human Errors 164
12.6 The Distribution of Failure 165
Chapter 13: The Future of the Industrial HMI

Appendices

Appendix 1: High Performance HMI Philosophy Document and Style Guides – Example Tables of Contents

Appendix 2: Assessing HMI Performance
  A2.1 General Graphic Factors
  A2.2 Navigation Factors
  A2.3 Workstation Factors
  A2.4 Control Room and Work Practice Factors
  A2.5 Alarm Management Factors
  A2.6 Operator Questionnaire
  A2.7 Testing the High Performance HMI vs. the Traditional HMI

Appendix 3: The PRO “Enhanced Radar Plot” – a Highly Effective HMI Element

Appendix 4: A Brief Overview of Alarm Management

References

About The Authors
<table>
<thead>
<tr>
<th>Illustrations</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2-1: A Typical Pre-DCS Control Panel</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2-2: A Typical Pre-Graphic “Group” Display</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2-3: A Typical Vendor Graphic More Appropriate for Selling Systems Than Operating a Process</td>
<td>15</td>
</tr>
<tr>
<td>Figure 3-1: Garmin® G1000 Dual-Screen Integrated Avionics in a Small Aircraft</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3-2: Typical Process Industry Graphic</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3-3: “Operating By Alarm”</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3-4: High Performance HMI Benefits</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3-5: Commando Cody HMI</td>
<td>28</td>
</tr>
<tr>
<td>Figure 4-1: An “Over-the-Top” Overview Display</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3-3: “Operating By Alarm”</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3-4: High Performance HMI Benefits</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3-5: Commando Cody HMI</td>
<td>28</td>
</tr>
<tr>
<td>Figure 7-1: An Example Graphic Violating Many Of The Principles For A High Performance HMI</td>
<td>51</td>
</tr>
<tr>
<td>Figure 7-2: Displaying Lots of Data</td>
<td>54</td>
</tr>
<tr>
<td>Figure 7-3: Fluffy’s Blood Test</td>
<td>54</td>
</tr>
<tr>
<td>Figure 7-4: Fluffy’s Blood Test – View 2</td>
<td>55</td>
</tr>
<tr>
<td>Figure 7-5: Fluffy’s Third Blood Test – View 3</td>
<td>55</td>
</tr>
<tr>
<td>Figure 7-6: Can You Make the Meeting?</td>
<td>56</td>
</tr>
<tr>
<td>Figure 7-7: “He’s Not Dead, Jim.”</td>
<td>58</td>
</tr>
<tr>
<td>Figure 7-8: A Process Pictorial View of a Compressor</td>
<td>59</td>
</tr>
<tr>
<td>Figure 7-9: A High Performance View of a Compressor</td>
<td>59</td>
</tr>
<tr>
<td>Figure 7-10: Moving Analog Indicator Enhancements</td>
<td>60</td>
</tr>
<tr>
<td>Figure 7-11: At-A-Glance Indicators – Column Temperatures</td>
<td>61</td>
</tr>
<tr>
<td>Figure 7-12: Data Needing a Trend</td>
<td>62</td>
</tr>
<tr>
<td>Figure 7-13: Trend Showing Slow Increase</td>
<td>62</td>
</tr>
<tr>
<td>Figure 7-14: Trend Showing Oscillation</td>
<td>63</td>
</tr>
<tr>
<td>Figure 7-15: Trend Showing Prior Upset</td>
<td>63</td>
</tr>
<tr>
<td>Figure 7-16: An “All-Trend” Level 2 Display with Access to the Relevant Process Controllers</td>
<td>66</td>
</tr>
<tr>
<td>Figure 7-17: Shades of Gray and Contrast</td>
<td>69</td>
</tr>
<tr>
<td>Figure 7-18: 3D vs. 2D Vessels and Lines</td>
<td>72</td>
</tr>
<tr>
<td>Figure 7-19: Low-Contrast “Blob Graphic” Elements</td>
<td>72</td>
</tr>
<tr>
<td>Figure 7-20: Values and Faceplate Pop-ups</td>
<td>75</td>
</tr>
<tr>
<td>Figure 7-21: Example Practices for Vessel Levels</td>
<td>76</td>
</tr>
<tr>
<td>Figure 7-22: Method 1 – Solid Color Blocks Behind the Process Value (Not Recommended)</td>
<td>77</td>
</tr>
<tr>
<td>Figure 7-23: Method 2 – Color Outlines Around the Process Value (Not Recommended)</td>
<td>78</td>
</tr>
<tr>
<td>Figure 7-24: Method 3 (Recommended) – The Separate Alarm Indicator Element</td>
<td>78</td>
</tr>
<tr>
<td>Figure 7-25: Alarm Suppression Indicator</td>
<td>79</td>
</tr>
<tr>
<td>Figure 7-26: Method 4 – The Separate Alarm Indicator Element with</td>
<td>79</td>
</tr>
</tbody>
</table>
Figure 7-27: A Typical DCS Controller With More Than 80 Parameters
Figure 7-28: A Simplified Controller Element for Graphics
Figure 7-29: Progressive Exposure of Controller Detailed Functionality
Figure 7-30: Simple Valve Depiction
Figure 7-31: One Controller With Multiple Valves
Figure 7-32: Pump Run Status Depiction
Figure 7-33: Layers of Confirmation
Figure 7-34: Mass Balance Indicators
Figure 7-35: The ISOM Unit Graphic. This Image is From the CSB’s Final Report on the 2005 BP Texas City Explosion and Fire.

Figure 8-1: High Performance HMI Display Hierarchy
Figure 8-2: Logical Arrangement of a Process Overview Display
Figure 8-3: Example Contents of a Process Overview Display
Figure 8-4: A Non-Projection Technology Overview Display
Figure 8-5: Example of a Level 2 Display
Figure 8-6: An Example of a High Performance Display Element Used for Startup
Figure 8-7: Another Example Element of a High Performance Display Element Used for Startup
Figure 8-8: Interlock Depiction Part 1
Figure 8-9: Interlock Depiction Part 2
Figure 8-10: Interlock Depiction Part 3
Figure 8-11: Interlock Diagnostic Table
Figure 8-12: Shutdown Initiator Table with First Out
Figure 8-13: Schematic Example of a Level 3 Compressor Display
Figure 8-14: Example of Alarm Rationalization Information
Figure 9-1: Example Modes of Operation
Figure 9-2: Example Performance and Goal Objectives for One Mode
Figure 9-3: Observation and Control Elements for a Level 2 Display
Figure 10-1: What Happens If You Do Not Plan Ahead
Figure 10-2: A Typical Lightbox
Figure 10-3: Alternative Presentations
Figure 10-4: Stacked Displays – a Non-Ergonomic DCS Screen Arrangement
Figure 10-5: Vertically Staggered Displays – an Improvement
Figure 10-6: High Performance Horizontal 6 Screen Console Layout
Figure 10-7: High Performance Semi-Horizontal 6 Screen Console Layout 135
Figure 10-8: High Performance 2-tier 6 Screen Console Layout 136
Figure 10-9: High Performance 2-tier 8 Screen Console Layout 137
Figure 11-1: Control Room Design Factors 146
Figure 11-2: One of Many Ergonomic Design Guidelines Contained in the SINTEF Report Checklist 147
Figure 11-3: A Refinery Unit Interactions Diagram 154
Figure 11-4: A Console Adjacency Matrix 155
Figure 11-5: Console Triangular Arrangement 156
Figure 11-6: Possible Control Room with Video Wall 158
Figure 11-7: Possible Control Room with Circular Stations 158
Figure 12-1: Relationships of Stress and Performance 160
Figure 12-2: Human Interaction with a Process Control System 163
Figure 13-1: Garmin® G1000 Showing “Highway in the Sky” and Terrain Mapping 169
Figure A2-1: Example Normal and Abnormal Scenarios 181
Figure A3-1: The Concept of a Time-varying Multivariable Display Mapped Into a 2-D Space 185
Figure A3-2: A PRO Display Element 187
Figure A3-3: PRO Display Element with Alarms, Range Bars, and Rate-of-Change Indicators 187
Figure A3-4: PRO Display Element in Deviation Mode 188
Figure A4-1: Exponential Growth of Configured Alarm Counts Per Operator 191
Figure A4-2: Rate of Alarms Per Day far Exceed Manageable Levels 193
Figure A4-3: Resolving the Top 20 “Bad Actor” Alarms Often Leads to Significant Improvement 194
Figure A4-4: Best Practice Recommendation for Alarm Priority Determination 196
Figure A4-5: Alarm Systems Degrade Over Time Without Proper MOC 197
Figure A4-6: Alarm Floods Render the Alarm System Useless to the Operator 199